UMM
EN

CN

中文 /  EN
language
中国
韩国
韩国
韩国
韩国
韩国
imgboxbg
imgboxbg

Industry News

Learn more about us through the industry

搜索
Search

News

Your location:
Homepage
/
/
Application of Molybdenum rhenium to the medical industry

Application of Molybdenum rhenium to the medical industry

  • Categories:News
  • Author:
  • Origin:
  • Time of issue:2021-12-07 15:27
  • Views:0

(Summary description)Molybdenum rhenium surgical implants are worth looking forward to becoming a new generation of more advanced medical metal materials, mainly due to the following three factors:

Application of Molybdenum rhenium to the medical industry

(Summary description)Molybdenum rhenium surgical implants are worth looking forward to becoming a new generation of more advanced medical metal materials, mainly due to the following three factors:

  • Categories:News
  • Author:
  • Origin:
  • Time of issue:2021-12-07 15:27
  • Views:0
Information

Molybdenum rhenium surgical implants are worth looking forward to becoming a new generation of more advanced medical metal materials, mainly due to the following three factors:

Molybdenum rhenium

1. Mechanical properties

Molybdenum rhenium is similar to almost all metal materials, and plastic deformation processing can increase the strength of molybdenum rhenium alloy. However, the particularity of molybdenum-rhenium alloy is that during plastic deformation, the molybdenum-rhenium alloy produces an unusual change during the deformation process, which is called twinning induced plasticity (TWIP). TWIP steel is a kind of second-generation high-strength steel, because it can produce a large number of deformation twins during the deformation process, delay the formation of necking, and has excellent strong plasticity. The molybdenum-rhenium alloy also benefits from this effect. Just as the data in the above-mentioned F3272 standard specification, the molybdenum-rhenium alloy can reach double-digit elongation while the strength exceeds 1300Mpa. In other words, molybdenum-rhenium alloy has high strength and excellent plasticity, which is conducive to processing into various natural forms. In actual clinical applications, for fractures of the skull, mandible, wrist, fingers, pelvis, and ankle joints, surgeons must modify the shape of these implants according to the patient's specific bone structure. This requires metal implants to have very good sculpting capabilities.

At the same time, another factor that affects the use of surgical implants is the fatigue of metal materials. Because surgical implants are usually affected by cyclic loads, most implant fractures are caused by fatigue failure. Compared with existing titanium alloys, molybdenum-rhenium alloy has more obvious advantages in terms of fatigue resistance, which can greatly improve the reliability of implants, reduce the probability of implant fracture, and reduce the risk of long-term use of the product.

2. Physical properties-magnetism

Common metal surgical implants have brought huge challenges to doctors when using magnetic resonance imaging (MRI) technology in the clinic. The strong magnetic field of MRI equipment can put tremendous stress on magnetic materials. Therefore, the implant alloy must be a non-magnetic material in order to eliminate the torque, displacement or heat generated during MRI imaging. Molybdenum rhenium is completely non-magnetic, so there is no problem in this regard. Another potential problem is artifacts or "bright light" in MRI images, which is a magnetic sensitivity effect of the implant. Artifacts can interfere with the interpretation of diagnostic results. Among the three traditional metal implant alloys of stainless steel, cobalt alloy, and titanium alloy, pure titanium implants produce the smallest MRI artifacts, while molybdenum-rhenium alloy materials have lower magnetic sensitivity and produce MRI artifacts. The shadow is smaller than pure titanium, so it has a great advantage in clinical replacement.

3. Biocompatibility

As a "bottom line" requirement for surgical implants, the non-toxicity and biocompatibility of Molybdenum rhenium is beyond doubt. Molybdenum rhenium has passed all "ISO 10993 Biological Evaluation of Medical Devices" tests and other related tests. Taking osteoconductivity as an example, studies have shown that the Molybdenum rhenium test nail is implanted into the femur of an animal. The results found that after 4, 13 and 26 weeks of implantation, Molybdenum rhenium and TC4 medical titanium alloy have similar bones. Conductivity.

In general, the large-scale application of Molybdenum rhenium surgical implants is worth looking forward to! At the same time, it is also worth investing money and time in research and development. Through a more advanced Molybdenum rhenium surgical implant, it will bring better Clinical experience, benefit patients, improve medical technology, change the world!

Keyword:

Scan the QR code to read on your phone

Top dynamic rankings

The Comprehensive Guide to RU Sputtering Target Preparation and Manufacturing Process
The Comprehensive Guide to RU Sputtering Target Preparation and Manufacturing Process
Explore the intricate process of RU sputtering target preparation and manufacturing in this detailed guide. Gain insights into the materials, techniques, and quality control measures that ensure optim
See more information
Explore the intricate process of RU sputtering target preparation and manufacturing in this detailed guide. Gain insights into the materials, techniques, and quality control measures that ensure optim
Understanding Ru Sputtering Targets: Key Insights for Electronic Component Manufacturing
Understanding Ru Sputtering Targets: Key Insights for Electronic Component Manufacturing
This article provides a comprehensive overview of Ru sputtering targets, exploring their significance in the electronic materials industry, their applications, and the processes involved in their prod
See more information
This article provides a comprehensive overview of Ru sputtering targets, exploring their significance in the electronic materials industry, their applications, and the processes involved in their prod
Key Factors to Consider When Choosing RU Sputtering Target for Semiconductor Applications
Key Factors to Consider When Choosing RU Sputtering Target for Semiconductor Applications
Explore the essential considerations for selecting the right Ru sputtering target in semiconductor manufacturing. This comprehensive guide delves into material properties, manufacturing techniques, ap
See more information
Explore the essential considerations for selecting the right Ru sputtering target in semiconductor manufacturing. This comprehensive guide delves into material properties, manufacturing techniques, ap
Exploring the Uses of Rhenium Targets in Electronic Components
Exploring the Uses of Rhenium Targets in Electronic Components
Discover the importance of rhenium targets in the production of electronic components in the electronics materials, parts, and components industry. Learn how rhenium targets play a crucial role in the
See more information
Discover the importance of rhenium targets in the production of electronic components in the electronics materials, parts, and components industry. Learn how rhenium targets play a crucial role in the
The Advantages of Using Rhenium Targets in Electronics Manufacturing
The Advantages of Using Rhenium Targets in Electronics Manufacturing
Discover the numerous benefits of incorporating rhenium targets in the production process of electronic components. Learn how this advanced material can enhance the performance and durability of elect
See more information
Discover the numerous benefits of incorporating rhenium targets in the production process of electronic components. Learn how this advanced material can enhance the performance and durability of elect
All You Need to Know About Rhenium Targets in Electronic Components
All You Need to Know About Rhenium Targets in Electronic Components
Are you curious about the role of rhenium targets in the production of electronic components? Look no further! In this article, we will explore the importance and applications of rhenium targets in th
See more information
Are you curious about the role of rhenium targets in the production of electronic components? Look no further! In this article, we will explore the importance and applications of rhenium targets in th
Enhancing Electrical Performance with Titanium Targets
Enhancing Electrical Performance with Titanium Targets
Discover how titanium targets can greatly improve the electrical performance of electronic components, materials, and parts in the field of electronic fine chemicals. Learn how these innovative materi
See more information
Discover how titanium targets can greatly improve the electrical performance of electronic components, materials, and parts in the field of electronic fine chemicals. Learn how these innovative materi
Exploring the Fascinating World of Titanium Targets in Electronic Fine Chemical Materials
Exploring the Fascinating World of Titanium Targets in Electronic Fine Chemical Materials
Discover the essential role of titanium targets in the realm of electronic fine chemical materials. Uncover the unique properties and applications of this critical component in electronic components,
See more information
Discover the essential role of titanium targets in the realm of electronic fine chemical materials. Uncover the unique properties and applications of this critical component in electronic components,
Exploring the Applications of Titanium Targets in Electronics
Exploring the Applications of Titanium Targets in Electronics
Discover the diverse applications of titanium targets in the field of electronics and learn how this versatile material is revolutionizing the industry. From enhancing the performance of electronic de
See more information
Discover the diverse applications of titanium targets in the field of electronics and learn how this versatile material is revolutionizing the industry. From enhancing the performance of electronic de
UMM

Scan the QR code and follow the official account