UMM
EN

CN

中文 /  EN
language
中国
韩国
韩国
韩国
韩国
韩国
imgboxbg
imgboxbg

Application Technology

Understand cutting-edge application technology

搜索
Search

Application Technology

Your location:
Homepage
/
/
About MOCVD

About MOCVD

(Summary description)MOCVD (Metal Organic Chemical Vapor Deposition, metal organic chemical vapor deposition) technology, also known as OMVPE, MOVPE, etc., is a new technology for preparing compound semiconductor single film proposed by Rockwell in 1968. The MOCVD method is to decompose and react the metal organic compound diluted in the carrier gas and the hydride of the V or VI element on the heated epitaxial substrate, and the reaction product is deposited on the epitaxial substrate to form A kind of epitaxial film technology, the use of this technology can grow nano-level high-quality film, it is precisely because of this feature that MOCVD technology is widely used in the production and manufacturing of semiconductor devices. T

About MOCVD

(Summary description)MOCVD (Metal Organic Chemical Vapor Deposition, metal organic chemical vapor deposition) technology, also known as OMVPE, MOVPE, etc., is a new technology for preparing compound semiconductor single film proposed by Rockwell in 1968. The MOCVD method is to decompose and react the metal organic compound diluted in the carrier gas and the hydride of the V or VI element on the heated epitaxial substrate, and the reaction product is deposited on the epitaxial substrate to form A kind of epitaxial film technology, the use of this technology can grow nano-level high-quality film, it is precisely because of this feature that MOCVD technology is widely used in the production and manufacturing of semiconductor devices. T

Information

MOCVD overview

MOCVD (Metal Organic Chemical Vapor Deposition, metal organic chemical vapor deposition) technology, also known as OMVPE, MOVPE, etc., is a new technology for preparing compound semiconductor single film proposed by Rockwell in 1968. The MOCVD method is to decompose and react the metal organic compound diluted in the carrier gas and the hydride of the V or VI element on the heated epitaxial substrate, and the reaction product is deposited on the epitaxial substrate to form A kind of epitaxial film technology, the use of this technology can grow nano-level high-quality film, it is precisely because of this feature that MOCVD technology is widely used in the production and manufacturing of semiconductor devices [1]. This technology has now become the most flexible, lowest cost, and most efficient technology for the growth of multi-layer structures of high-quality devices of III-V and II-VI compound semiconductors. In recent decades, the IT industry has been driven by the advancement of semiconductor technology. The rapid development, especially the rapid development of new semiconductor optoelectronic devices and microwave devices, huge market demand and the continuous progress of MOCVD technology, make MOCVD the key core equipment for semiconductor manufacturing with huge demand, and it is also the most promising development in the optoelectronics industry. One of the dedicated equipment. This equipment integrates precision machinery, semiconductor materials, vacuum electronics, fluid mechanics, optics, chemistry, computers and other disciplines into one. It is a sophisticated optoelectronic special equipment with high automation, high price, and high technology integration [2]. At present, MOCVD equipment has been widely used in the epitaxial growth of GaN (gallium nitride) semiconductor materials and blue, green or ultraviolet light emitting diode chips, heterojunction bipolar transistors (HBT), high electron mobility transistors (HFET), solar energy In the manufacturing and research of semiconductor devices such as batteries, field effect tubes (FETs), and optical detectors, it can be seen that MOCVD has a pivotal position in the semiconductor industry.

 

Overview of Foreign Research

The manufacturing technology of MOCVD equipment is mastered by a few foreign companies, such as AIXTRON in Germany, Thomas Swan and EMF in the United Kingdom, Veeco in the United States, Nissia, Nippon Sanso and Nissin Electric in Japan, etc. Some companies use their own in the production process. Unique MOCVD equipment.

 

Brief introduction of MOCVD equipment principle:

MOCVD equipment mainly includes four parts: gas system, heating system, reaction chamber and detection and control system. The gas path system mainly realizes the transportation of the gas source, the precise control of the gas flow, the accurate and fast switching of the valve and the treatment of the exhaust gas; the heating system mainly heats the substrate where the reaction occurs, provides the temperature required for the reaction, and satisfies the heating Uniformity, fast heating and cooling speed, short temperature stabilization time, etc.; the reaction chamber is the core part of the entire equipment. After the reaction gas enters the reaction chamber through the transport system, gas phase chemical reactions occur in the reaction chamber and the heated substrate surface respectively It reacts with the surface chemically, and after several complicated steps such as diffusion, adsorption, reaction and desorption, a homogeneous or heterogeneous crystal film is uniformly epitaxially grown on the substrate; the detection and control system mainly detects the temperature field in the reaction chamber online , Film thickness and uniformity and other parameters, and control the gas path and heating system.

 

The heating system of MOCVD has two functions. One is to provide temperature control for the constant temperature water bath containing the organic source steel cylinder, and the other is to provide the temperature required for epitaxial growth in the reaction chamber. The main temperature control equipment in the reaction chamber is the graphite carrier. The heating electric furnace under the sheet table adjusts the temperature of the reaction chamber by changing the power of the heating electric furnace to meet the needs of epitaxial growth. The core of the heating system design is the design of the heating electric furnace. The MOCVD equipment generally needs a heating temperature of about 1500°C during the growth process, so the heating element of the heating electric furnace needs to be able to withstand a high temperature above 2000°C. The heating element material we choose must It can withstand this high temperature, and the properties of the material must be very stable at this high temperature, so as to ensure the long-term stable heating of the electric furnace. At present, the materials suitable for this situation mainly include rhenium, tungsten and tungsten rhenium alloy.
 

Scan the QR code to read on your phone

Hot Technology Ranking

Application of Gold in High-end Manufacturing-Electronic Semiconductor
Application of Gold in High-end Manufacturing-Electronic Semiconductor
Gold has been considered a valuable precious metal since ancient times, and its unique chemical and physical properties have led to its extensive use in various fields. It serves as both a special reserve and investment currency, dominates the jewelry industry, and plays a crucial role in modern industries such as telecommunications, aerospace, and aviation. In the field of electronic device manufacturing, gold is highly regarded for its excellent conductivity. Gold's conductivity is not only superior to common conductive metals like copper and silver but also exhibits excellent stability in extreme environments such as high temperatures, high pressures, and low temperatures. Therefore, gold finds wide applications in semiconductors and electronic components.
See more information
Gold has been considered a valuable precious metal since ancient times, and its unique chemical and physical properties have led to its extensive use in various fields. It serves as both a special reserve and investment currency, dominates the jewelry industry, and plays a crucial role in modern industries such as telecommunications, aerospace, and aviation. In the field of electronic device manufacturing, gold is highly regarded for its excellent conductivity. Gold's conductivity is not only superior to common conductive metals like copper and silver but also exhibits excellent stability in extreme environments such as high temperatures, high pressures, and low temperatures. Therefore, gold finds wide applications in semiconductors and electronic components.
Overview of Vacuum Ion Coating
Overview of Vacuum Ion Coating
With the rapid development of science and technology, the mechanical manufacturing industry plays an increasingly important role in production. Corrosion on the surfaces of mechanical components is a major issue in the industry. Therefore, improving surface hardness, wear resistance, corrosion resistance, and other properties of the components is crucial in the field of mechanical manufacturing. Coating the surface of components is one of the most commonly used methods to enhance their performance. However, coating technologies have several drawbacks. For example, the adhesion of coatings is poor, leading to easy delamination. There is also a significant difference in thermal expansion coefficients between the coating and the substrate material, making the coating prone to cracking. These limitations restrict their practical application in production.
See more information
With the rapid development of science and technology, the mechanical manufacturing industry plays an increasingly important role in production. Corrosion on the surfaces of mechanical components is a major issue in the industry. Therefore, improving surface hardness, wear resistance, corrosion resistance, and other properties of the components is crucial in the field of mechanical manufacturing. Coating the surface of components is one of the most commonly used methods to enhance their performance. However, coating technologies have several drawbacks. For example, the adhesion of coatings is poor, leading to easy delamination. There is also a significant difference in thermal expansion coefficients between the coating and the substrate material, making the coating prone to cracking. These limitations restrict their practical application in production.
Overview of Chemical Vapor Deposition (CVD) Coating
Overview of Chemical Vapor Deposition (CVD) Coating
With the continuous improvement in the requirements of aerospace, nuclear industry, semiconductors, and other fields for semiconductor devices, integrated circuits, high-field and small-sized superconducting materials, and crystal growth products, chemical vapor deposition technology has a broad market application prospect as an essential method for material preparation and effective surface modification. Some researchers predict that CVD will focus on reducing harmful by-products and increasing industrial-scale production in the future. Additionally, the development of lower-temperature CVD processes, more precise control over CVD processes, thick film deposition techniques, novel film materials, and new material synthesis technologies will be the major areas of research in the future.
See more information
With the continuous improvement in the requirements of aerospace, nuclear industry, semiconductors, and other fields for semiconductor devices, integrated circuits, high-field and small-sized superconducting materials, and crystal growth products, chemical vapor deposition technology has a broad market application prospect as an essential method for material preparation and effective surface modification. Some researchers predict that CVD will focus on reducing harmful by-products and increasing industrial-scale production in the future. Additionally, the development of lower-temperature CVD processes, more precise control over CVD processes, thick film deposition techniques, novel film materials, and new material synthesis technologies will be the major areas of research in the future.
Overview of Evaporative Coating and Its Material Selection
Overview of Evaporative Coating and Its Material Selection
Vacuum evaporation coating refers to a technique of obtaining thin films by heating and evaporating a certain substance under vacuum conditions to deposit it on the surface of the substrate material. The substance that has been evaporated is called a evaporative material. Evaporative coating was first proposed by M. Faraday in 1857 and has become one of the mainstream coating technologies after over a hundred years of development.
See more information
Vacuum evaporation coating refers to a technique of obtaining thin films by heating and evaporating a certain substance under vacuum conditions to deposit it on the surface of the substrate material. The substance that has been evaporated is called a evaporative material. Evaporative coating was first proposed by M. Faraday in 1857 and has become one of the mainstream coating technologies after over a hundred years of development.
What are the characteristics of high-quality sputtering targets?
What are the characteristics of high-quality sputtering targets?
PVD (Physical Vapor Deposition) technology is one of the main technologies for preparing thin film materials. Under vacuum conditions, physical methods are used to vaporize a material into gaseous atoms, molecules, or partially ionize it into ions, and through a low-pressure gas (or plasma) process, thin film materials with special functions such as transparency enhancement, reflection, protective conductivity, magnetic conductivity, insulation, corrosion resistance, oxidation resistance, radiation protection, and decoration are deposited on the surface of the substrate material. T
See more information
PVD (Physical Vapor Deposition) technology is one of the main technologies for preparing thin film materials. Under vacuum conditions, physical methods are used to vaporize a material into gaseous atoms, molecules, or partially ionize it into ions, and through a low-pressure gas (or plasma) process, thin film materials with special functions such as transparency enhancement, reflection, protective conductivity, magnetic conductivity, insulation, corrosion resistance, oxidation resistance, radiation protection, and decoration are deposited on the surface of the substrate material. T
Overview of Vacuum Coating Materials And Technologies
Overview of Vacuum Coating Materials And Technologies
Vacuum sputter coating. It refers to the technique of using ions generated by an ion source, which are accelerated and gathered in a vacuum to form a high ion beams, to bombard the surface of the target (coating material), where kinetic energy is exchanged between the ions and the atoms on the surface of the target, causing the atoms on the surface of the target to leave and be deposited on the surface of the substrate material. The object bombarded with ions is the raw material for the deposition of thin film materials by the vacuum sputtering method and is called a sputtering target.
See more information
Vacuum sputter coating. It refers to the technique of using ions generated by an ion source, which are accelerated and gathered in a vacuum to form a high ion beams, to bombard the surface of the target (coating material), where kinetic energy is exchanged between the ions and the atoms on the surface of the target, causing the atoms on the surface of the target to leave and be deposited on the surface of the substrate material. The object bombarded with ions is the raw material for the deposition of thin film materials by the vacuum sputtering method and is called a sputtering target.
Application and preparation method of spherical powder
Application and preparation method of spherical powder
Spherical powders have been widely used in many fields because of their good fluidity and high density. In the field of thermal spraying, the spherical powder makes the coating more uniform and dense because of its good fluidity, so the coating has better wear resistance; In the field of powder metallurgy, the forming parts prepared by spherical powder have high density and uniform shrinkage in the sintering process, so the products obtained have high precision and good performance. It has obvious advantages in the application of advanced powder metallurgy forming technology such as injection molding, gel injection molding and additive manufacturing (such as 3D printing technology).
See more information
Spherical powders have been widely used in many fields because of their good fluidity and high density. In the field of thermal spraying, the spherical powder makes the coating more uniform and dense because of its good fluidity, so the coating has better wear resistance; In the field of powder metallurgy, the forming parts prepared by spherical powder have high density and uniform shrinkage in the sintering process, so the products obtained have high precision and good performance. It has obvious advantages in the application of advanced powder metallurgy forming technology such as injection molding, gel injection molding and additive manufacturing (such as 3D printing technology).
Platinum group metals have been grinding for a decade, and the future is not to be underestimated
Platinum group metals have been grinding for a decade, and the future is not to be underestimated
As the "newborn" of the metal family, platinum group precious metals play an indispensable role from the transformation of the traditional petrochemical industry to the whole industrial chain of new energy, including hydrogen energy, and will eventually play an important role in the development of the 21st century!
See more information
As the "newborn" of the metal family, platinum group precious metals play an indispensable role from the transformation of the traditional petrochemical industry to the whole industrial chain of new energy, including hydrogen energy, and will eventually play an important role in the development of the 21st century!
Advantages and disadvantages of friction stir welding
 Advantages and disadvantages of friction stir welding
The main advantages of friction stir welding are as follows:
See more information
The main advantages of friction stir welding are as follows:
UMM

Scan the QR code and follow the official account