UMM
EN

CN

中文 /  EN
language
中国
韩国
韩国
韩国
韩国
韩国
imgboxbg
imgboxbg

Application Technology

Understand cutting-edge application technology

搜索
Search

Application Technology

Your location:
Homepage
/
/
Application and preparation method of spherical powder

Application and preparation method of spherical powder

(Summary description)Spherical powders have been widely used in many fields because of their good fluidity and high density. In the field of thermal spraying, the spherical powder makes the coating more uniform and dense because of its good fluidity, so the coating has better wear resistance; In the field of powder metallurgy, the forming parts prepared by spherical powder have high density and uniform shrinkage in the sintering process, so the products obtained have high precision and good performance. It has obvious advantages in the application of advanced powder metallurgy forming technology such as injection molding, gel injection molding and additive manufacturing (such as 3D printing technology).

Application and preparation method of spherical powder

(Summary description)Spherical powders have been widely used in many fields because of their good fluidity and high density. In the field of thermal spraying, the spherical powder makes the coating more uniform and dense because of its good fluidity, so the coating has better wear resistance; In the field of powder metallurgy, the forming parts prepared by spherical powder have high density and uniform shrinkage in the sintering process, so the products obtained have high precision and good performance. It has obvious advantages in the application of advanced powder metallurgy forming technology such as injection molding, gel injection molding and additive manufacturing (such as 3D printing technology).

Information

Spherical powders have been widely used in many fields because of their good fluidity and high density. In the field of thermal spraying, the spherical powder makes the coating more uniform and dense because of its good fluidity, so the coating has better wear resistance; In the field of powder metallurgy, the forming parts prepared by spherical powder have high density and uniform shrinkage in the sintering process, so the products obtained have high precision and good performance. It has obvious advantages in the application of advanced powder metallurgy forming technology such as injection molding, gel injection molding and additive manufacturing (such as 3D printing technology).

Gas flame spheroidization technology (suitable for ceramic materials below 2500℃)

Through the special design of the oxygen-enriched combustion flame burner with CH4 by O2, according to the set of spray Angle and length of flame spraying high temperature flame, the irregular shape of the powder with a carrier gas (oxygen) by send powder spray into the high temperature flame area, powder particles in the high temperature gas flame burning large amounts of heat, surface melting quickly, and into the reactor at high speed, Under the dual action of rapid air cooling and surface tension, the powder is collected after cooling and solidifying into a spherical powder.

The spherical alumina produced by high-temperature melting and spraying method can reach 95% or higher sphericity, which has the characteristics of high sphericity and high α-phase alumina content.

Widely used in packaging thermal conductivity, thermal interface materials, thermal engineering plastics, high thermal conductivity aluminum copper-clad plate and alumina ceramic substrate surface spraying. Spherical alumina powder market development opportunity is good, is one of the key materials required for a variety of thermal conductivity materials and thermal interface materials.

 Radio frequency plasma spherification technology (applicable to all metal or non-metal materials)

Plasma spherification technology is generally used to process refractory metals, such as spherical tantalum powder, spherical niobium powder, spherical tungsten powder, spherical molybdenum powder, spherical vanadium powder and so on.

Technical principle:

1、under the action of high-frequency power supply, oxidation or reducing atmosphere gas, inert gas (can be attached to hydrogen) is ionized, forming a stable high temperature gas plasma;

2、irregularly shaped materials powder with carrier (inert gas through send powder sprayed into the plasma torch, powder particles to absorb a large amount of heat in the high temperature plasma, surface melting quickly, and at high speed into the reactor were gas heat exchange cooling quickly, in under the action of surface tension, cooling solidification into spherical powder, into the receiving chamber in the collection.

 

 

Other atomization pulverization technology (plasma atomization, vacuum melting gas atomization, rotating disk centrifugal atomization, ultrasonic vibration atomization)

 

Plasma atomization powder making technology (suitable for all metal materials)

Technical principle: Because of the conductivity of ionized gas, the arc energy is rapidly transferred and turned into the heat energy of the gas, forming a high temperature gas jet (temperature above 5000℃), which can be used as a high intensity heat source. Metal and its alloy, ceramic (wire, rod, solid liquid) through the specially designed feeding device to make the material through the plasma gun produced by ultra-high temperature jet melting atomization, finally by controlling the cooling rate, to get the spherical micro nano powder.

 

Gas atomization powder technology (applicable to the melting point below 1800℃ metal materials or metal ceramic materials)

Technical principle: under the condition of vacuum or gas heating smelting of metal liquid and after insulation tundish crucible, current-limiting nozzle, imported high pressure gas atomizer, high-speed gas jet atomization of liquid metal into a large number of small droplets, droplet deposition under the action of surface tension in the process of cooling solidified into a sphere or spherical powder particles.

Keyword:

Scan the QR code to read on your phone

Hot Technology Ranking

Application of Gold in High-end Manufacturing-Electronic Semiconductor
Application of Gold in High-end Manufacturing-Electronic Semiconductor
Gold has been considered a valuable precious metal since ancient times, and its unique chemical and physical properties have led to its extensive use in various fields. It serves as both a special reserve and investment currency, dominates the jewelry industry, and plays a crucial role in modern industries such as telecommunications, aerospace, and aviation. In the field of electronic device manufacturing, gold is highly regarded for its excellent conductivity. Gold's conductivity is not only superior to common conductive metals like copper and silver but also exhibits excellent stability in extreme environments such as high temperatures, high pressures, and low temperatures. Therefore, gold finds wide applications in semiconductors and electronic components.
See more information
Gold has been considered a valuable precious metal since ancient times, and its unique chemical and physical properties have led to its extensive use in various fields. It serves as both a special reserve and investment currency, dominates the jewelry industry, and plays a crucial role in modern industries such as telecommunications, aerospace, and aviation. In the field of electronic device manufacturing, gold is highly regarded for its excellent conductivity. Gold's conductivity is not only superior to common conductive metals like copper and silver but also exhibits excellent stability in extreme environments such as high temperatures, high pressures, and low temperatures. Therefore, gold finds wide applications in semiconductors and electronic components.
Overview of Vacuum Ion Coating
Overview of Vacuum Ion Coating
With the rapid development of science and technology, the mechanical manufacturing industry plays an increasingly important role in production. Corrosion on the surfaces of mechanical components is a major issue in the industry. Therefore, improving surface hardness, wear resistance, corrosion resistance, and other properties of the components is crucial in the field of mechanical manufacturing. Coating the surface of components is one of the most commonly used methods to enhance their performance. However, coating technologies have several drawbacks. For example, the adhesion of coatings is poor, leading to easy delamination. There is also a significant difference in thermal expansion coefficients between the coating and the substrate material, making the coating prone to cracking. These limitations restrict their practical application in production.
See more information
With the rapid development of science and technology, the mechanical manufacturing industry plays an increasingly important role in production. Corrosion on the surfaces of mechanical components is a major issue in the industry. Therefore, improving surface hardness, wear resistance, corrosion resistance, and other properties of the components is crucial in the field of mechanical manufacturing. Coating the surface of components is one of the most commonly used methods to enhance their performance. However, coating technologies have several drawbacks. For example, the adhesion of coatings is poor, leading to easy delamination. There is also a significant difference in thermal expansion coefficients between the coating and the substrate material, making the coating prone to cracking. These limitations restrict their practical application in production.
Overview of Chemical Vapor Deposition (CVD) Coating
Overview of Chemical Vapor Deposition (CVD) Coating
With the continuous improvement in the requirements of aerospace, nuclear industry, semiconductors, and other fields for semiconductor devices, integrated circuits, high-field and small-sized superconducting materials, and crystal growth products, chemical vapor deposition technology has a broad market application prospect as an essential method for material preparation and effective surface modification. Some researchers predict that CVD will focus on reducing harmful by-products and increasing industrial-scale production in the future. Additionally, the development of lower-temperature CVD processes, more precise control over CVD processes, thick film deposition techniques, novel film materials, and new material synthesis technologies will be the major areas of research in the future.
See more information
With the continuous improvement in the requirements of aerospace, nuclear industry, semiconductors, and other fields for semiconductor devices, integrated circuits, high-field and small-sized superconducting materials, and crystal growth products, chemical vapor deposition technology has a broad market application prospect as an essential method for material preparation and effective surface modification. Some researchers predict that CVD will focus on reducing harmful by-products and increasing industrial-scale production in the future. Additionally, the development of lower-temperature CVD processes, more precise control over CVD processes, thick film deposition techniques, novel film materials, and new material synthesis technologies will be the major areas of research in the future.
Overview of Evaporative Coating and Its Material Selection
Overview of Evaporative Coating and Its Material Selection
Vacuum evaporation coating refers to a technique of obtaining thin films by heating and evaporating a certain substance under vacuum conditions to deposit it on the surface of the substrate material. The substance that has been evaporated is called a evaporative material. Evaporative coating was first proposed by M. Faraday in 1857 and has become one of the mainstream coating technologies after over a hundred years of development.
See more information
Vacuum evaporation coating refers to a technique of obtaining thin films by heating and evaporating a certain substance under vacuum conditions to deposit it on the surface of the substrate material. The substance that has been evaporated is called a evaporative material. Evaporative coating was first proposed by M. Faraday in 1857 and has become one of the mainstream coating technologies after over a hundred years of development.
What are the characteristics of high-quality sputtering targets?
What are the characteristics of high-quality sputtering targets?
PVD (Physical Vapor Deposition) technology is one of the main technologies for preparing thin film materials. Under vacuum conditions, physical methods are used to vaporize a material into gaseous atoms, molecules, or partially ionize it into ions, and through a low-pressure gas (or plasma) process, thin film materials with special functions such as transparency enhancement, reflection, protective conductivity, magnetic conductivity, insulation, corrosion resistance, oxidation resistance, radiation protection, and decoration are deposited on the surface of the substrate material. T
See more information
PVD (Physical Vapor Deposition) technology is one of the main technologies for preparing thin film materials. Under vacuum conditions, physical methods are used to vaporize a material into gaseous atoms, molecules, or partially ionize it into ions, and through a low-pressure gas (or plasma) process, thin film materials with special functions such as transparency enhancement, reflection, protective conductivity, magnetic conductivity, insulation, corrosion resistance, oxidation resistance, radiation protection, and decoration are deposited on the surface of the substrate material. T
Overview of Vacuum Coating Materials And Technologies
Overview of Vacuum Coating Materials And Technologies
Vacuum sputter coating. It refers to the technique of using ions generated by an ion source, which are accelerated and gathered in a vacuum to form a high ion beams, to bombard the surface of the target (coating material), where kinetic energy is exchanged between the ions and the atoms on the surface of the target, causing the atoms on the surface of the target to leave and be deposited on the surface of the substrate material. The object bombarded with ions is the raw material for the deposition of thin film materials by the vacuum sputtering method and is called a sputtering target.
See more information
Vacuum sputter coating. It refers to the technique of using ions generated by an ion source, which are accelerated and gathered in a vacuum to form a high ion beams, to bombard the surface of the target (coating material), where kinetic energy is exchanged between the ions and the atoms on the surface of the target, causing the atoms on the surface of the target to leave and be deposited on the surface of the substrate material. The object bombarded with ions is the raw material for the deposition of thin film materials by the vacuum sputtering method and is called a sputtering target.
Application and preparation method of spherical powder
Application and preparation method of spherical powder
Spherical powders have been widely used in many fields because of their good fluidity and high density. In the field of thermal spraying, the spherical powder makes the coating more uniform and dense because of its good fluidity, so the coating has better wear resistance; In the field of powder metallurgy, the forming parts prepared by spherical powder have high density and uniform shrinkage in the sintering process, so the products obtained have high precision and good performance. It has obvious advantages in the application of advanced powder metallurgy forming technology such as injection molding, gel injection molding and additive manufacturing (such as 3D printing technology).
See more information
Spherical powders have been widely used in many fields because of their good fluidity and high density. In the field of thermal spraying, the spherical powder makes the coating more uniform and dense because of its good fluidity, so the coating has better wear resistance; In the field of powder metallurgy, the forming parts prepared by spherical powder have high density and uniform shrinkage in the sintering process, so the products obtained have high precision and good performance. It has obvious advantages in the application of advanced powder metallurgy forming technology such as injection molding, gel injection molding and additive manufacturing (such as 3D printing technology).
Platinum group metals have been grinding for a decade, and the future is not to be underestimated
Platinum group metals have been grinding for a decade, and the future is not to be underestimated
As the "newborn" of the metal family, platinum group precious metals play an indispensable role from the transformation of the traditional petrochemical industry to the whole industrial chain of new energy, including hydrogen energy, and will eventually play an important role in the development of the 21st century!
See more information
As the "newborn" of the metal family, platinum group precious metals play an indispensable role from the transformation of the traditional petrochemical industry to the whole industrial chain of new energy, including hydrogen energy, and will eventually play an important role in the development of the 21st century!
Advantages and disadvantages of friction stir welding
 Advantages and disadvantages of friction stir welding
The main advantages of friction stir welding are as follows:
See more information
The main advantages of friction stir welding are as follows:
UMM

Scan the QR code and follow the official account