UMM
EN

CN

language
中国
韩国
韩国
韩国
韩国
韩国
imgboxbg

Application Technology

Understand cutting-edge application technology

搜索
Search

Application Technology

Your location:
Homepage
/
/
Application and preparation method of spherical powder

Application and preparation method of spherical powder

(Summary description)Spherical powders have been widely used in many fields because of their good fluidity and high density. In the field of thermal spraying, the spherical powder makes the coating more uniform and dense because of its good fluidity, so the coating has better wear resistance; In the field of powder metallurgy, the forming parts prepared by spherical powder have high density and uniform shrinkage in the sintering process, so the products obtained have high precision and good performance. It has obvious advantages in the application of advanced powder metallurgy forming technology such as injection molding, gel injection molding and additive manufacturing (such as 3D printing technology).

Application and preparation method of spherical powder

(Summary description)Spherical powders have been widely used in many fields because of their good fluidity and high density. In the field of thermal spraying, the spherical powder makes the coating more uniform and dense because of its good fluidity, so the coating has better wear resistance; In the field of powder metallurgy, the forming parts prepared by spherical powder have high density and uniform shrinkage in the sintering process, so the products obtained have high precision and good performance. It has obvious advantages in the application of advanced powder metallurgy forming technology such as injection molding, gel injection molding and additive manufacturing (such as 3D printing technology).

Information

Spherical powders have been widely used in many fields because of their good fluidity and high density. In the field of thermal spraying, the spherical powder makes the coating more uniform and dense because of its good fluidity, so the coating has better wear resistance; In the field of powder metallurgy, the forming parts prepared by spherical powder have high density and uniform shrinkage in the sintering process, so the products obtained have high precision and good performance. It has obvious advantages in the application of advanced powder metallurgy forming technology such as injection molding, gel injection molding and additive manufacturing (such as 3D printing technology).

Gas flame spheroidization technology (suitable for ceramic materials below 2500℃)

Through the special design of the oxygen-enriched combustion flame burner with CH4 by O2, according to the set of spray Angle and length of flame spraying high temperature flame, the irregular shape of the powder with a carrier gas (oxygen) by send powder spray into the high temperature flame area, powder particles in the high temperature gas flame burning large amounts of heat, surface melting quickly, and into the reactor at high speed, Under the dual action of rapid air cooling and surface tension, the powder is collected after cooling and solidifying into a spherical powder.

The spherical alumina produced by high-temperature melting and spraying method can reach 95% or higher sphericity, which has the characteristics of high sphericity and high α-phase alumina content.

Widely used in packaging thermal conductivity, thermal interface materials, thermal engineering plastics, high thermal conductivity aluminum copper-clad plate and alumina ceramic substrate surface spraying. Spherical alumina powder market development opportunity is good, is one of the key materials required for a variety of thermal conductivity materials and thermal interface materials.

 Radio frequency plasma spherification technology (applicable to all metal or non-metal materials)

Plasma spherification technology is generally used to process refractory metals, such as spherical tantalum powder, spherical niobium powder, spherical tungsten powder, spherical molybdenum powder, spherical vanadium powder and so on.

Technical principle:

1、under the action of high-frequency power supply, oxidation or reducing atmosphere gas, inert gas (can be attached to hydrogen) is ionized, forming a stable high temperature gas plasma;

2、irregularly shaped materials powder with carrier (inert gas through send powder sprayed into the plasma torch, powder particles to absorb a large amount of heat in the high temperature plasma, surface melting quickly, and at high speed into the reactor were gas heat exchange cooling quickly, in under the action of surface tension, cooling solidification into spherical powder, into the receiving chamber in the collection.

 

 

Other atomization pulverization technology (plasma atomization, vacuum melting gas atomization, rotating disk centrifugal atomization, ultrasonic vibration atomization)

 

Plasma atomization powder making technology (suitable for all metal materials)

Technical principle: Because of the conductivity of ionized gas, the arc energy is rapidly transferred and turned into the heat energy of the gas, forming a high temperature gas jet (temperature above 5000℃), which can be used as a high intensity heat source. Metal and its alloy, ceramic (wire, rod, solid liquid) through the specially designed feeding device to make the material through the plasma gun produced by ultra-high temperature jet melting atomization, finally by controlling the cooling rate, to get the spherical micro nano powder.

 

Gas atomization powder technology (applicable to the melting point below 1800℃ metal materials or metal ceramic materials)

Technical principle: under the condition of vacuum or gas heating smelting of metal liquid and after insulation tundish crucible, current-limiting nozzle, imported high pressure gas atomizer, high-speed gas jet atomization of liquid metal into a large number of small droplets, droplet deposition under the action of surface tension in the process of cooling solidified into a sphere or spherical powder particles.

Keyword:

Scan the QR code to read on your phone

Hot Technology Ranking

Application and preparation method of spherical powder
Application and preparation method of spherical powder
Spherical powders have been widely used in many fields because of their good fluidity and high density. In the field of thermal spraying, the spherical powder makes the coating more uniform and dense because of its good fluidity, so the coating has better wear resistance; In the field of powder metallurgy, the forming parts prepared by spherical powder have high density and uniform shrinkage in the sintering process, so the products obtained have high precision and good performance. It has obvious advantages in the application of advanced powder metallurgy forming technology such as injection molding, gel injection molding and additive manufacturing (such as 3D printing technology).
See more information
Spherical powders have been widely used in many fields because of their good fluidity and high density. In the field of thermal spraying, the spherical powder makes the coating more uniform and dense because of its good fluidity, so the coating has better wear resistance; In the field of powder metallurgy, the forming parts prepared by spherical powder have high density and uniform shrinkage in the sintering process, so the products obtained have high precision and good performance. It has obvious advantages in the application of advanced powder metallurgy forming technology such as injection molding, gel injection molding and additive manufacturing (such as 3D printing technology).
Platinum group metals have been grinding for a decade, and the future is not to be underestimated
Platinum group metals have been grinding for a decade, and the future is not to be underestimated
As the "newborn" of the metal family, platinum group precious metals play an indispensable role from the transformation of the traditional petrochemical industry to the whole industrial chain of new energy, including hydrogen energy, and will eventually play an important role in the development of the 21st century!
See more information
As the "newborn" of the metal family, platinum group precious metals play an indispensable role from the transformation of the traditional petrochemical industry to the whole industrial chain of new energy, including hydrogen energy, and will eventually play an important role in the development of the 21st century!
Advantages and disadvantages of friction stir welding
 Advantages and disadvantages of friction stir welding
The main advantages of friction stir welding are as follows:
See more information
The main advantages of friction stir welding are as follows:
What fields are friction stir welding generally used in
What fields are friction stir welding generally used in
Everyone may have heard of Friction Stir Welding (FSW), which was officially launched in 1991. As soon as it appeared, it attracted the attention of the world.
See more information
Everyone may have heard of Friction Stir Welding (FSW), which was officially launched in 1991. As soon as it appeared, it attracted the attention of the world.
Specialized solutions for milling, cutting and drilling tool base materials for high temperature alloys, refractory metals and other parts
Specialized solutions for milling, cutting and drilling tool base materials for high temperature alloys, refractory metals and other parts
Ultra Minor Metals Ltd(UMM) has more than ten years of experience in the application and development of alloy trace addition, and provides rare, scattered and rare precious metal element addition solutions for various alloy manufacturing enterprises. According to the difficulties encountered in milling, cutting and drilling of high-temperature alloys, refractory metals and other parts and components reported by many users in recent years, UMM has finally successfully developed after five years of joint research and development tests with leading domestic enterprises. In order to add ruthenium, rhenium, osmium and other elemental high-purity ultrafine powders specially used to add to the base material of such special cemented carbide tools, or Co-Ru, Re, Os binary and ternary pre-alloyed mixed powders, we also warmly welcome all major High-performance alloy tool manufacturing enterprises and our company jointly develop various special customized tool material grades.
See more information
Ultra Minor Metals Ltd(UMM) has more than ten years of experience in the application and development of alloy trace addition, and provides rare, scattered and rare precious metal element addition solutions for various alloy manufacturing enterprises. According to the difficulties encountered in milling, cutting and drilling of high-temperature alloys, refractory metals and other parts and components reported by many users in recent years, UMM has finally successfully developed after five years of joint research and development tests with leading domestic enterprises. In order to add ruthenium, rhenium, osmium and other elemental high-purity ultrafine powders specially used to add to the base material of such special cemented carbide tools, or Co-Ru, Re, Os binary and ternary pre-alloyed mixed powders, we also warmly welcome all major High-performance alloy tool manufacturing enterprises and our company jointly develop various special customized tool material grades.
The principle of friction stir welding
The principle of friction stir welding
Friction stir welding refers to the use of the heat generated by the friction between the high-speed rotating welding tool and the workpiece to partially melt the material to be welded.
See more information
Friction stir welding refers to the use of the heat generated by the friction between the high-speed rotating welding tool and the workpiece to partially melt the material to be welded.
Application of friction stir welding
Application of friction stir welding
Friction stir welding is a solid-state connection method. In terms of connection principle, for the metal materials to be connected, as long as the material has a stirring head material that can work effectively in the forging state, the friction stir welding method can be used. to connect.
See more information
Friction stir welding is a solid-state connection method. In terms of connection principle, for the metal materials to be connected, as long as the material has a stirring head material that can work effectively in the forging state, the friction stir welding method can be used. to connect.
CT machine X-ray tube anode rotating target
CT machine X-ray tube anode rotating target
When the CT tube is working, the anode target produces X-rays under the bombardment of high-energy electron beams, but the energy conversion efficiency is very low. Only about 1% of the energy is converted into X-ray energy, and the remaining 99% of the energy is converted into heat energy. The local temperature can be as high as 2600°C. Therefore, the rotating anode target needs to have the characteristics of high high temperature strength, good thermal shock resistance, and fast heat dissipation. Therefore, the density of the target material, the content of alloy impurity elements, and the brazing bonding strength of graphite and molybdenum alloys affect the service life of the target. Key factor.
See more information
When the CT tube is working, the anode target produces X-rays under the bombardment of high-energy electron beams, but the energy conversion efficiency is very low. Only about 1% of the energy is converted into X-ray energy, and the remaining 99% of the energy is converted into heat energy. The local temperature can be as high as 2600°C. Therefore, the rotating anode target needs to have the characteristics of high high temperature strength, good thermal shock resistance, and fast heat dissipation. Therefore, the density of the target material, the content of alloy impurity elements, and the brazing bonding strength of graphite and molybdenum alloys affect the service life of the target. Key factor.
MOCVD irreplaceable "rhenium" heater member
MOCVD irreplaceable "rhenium" heater member
Tungsten heating devices will become brittle after being recrystallized after being used at high temperature, and will easily break under impact or vibration. Compared with tungsten, rhenium has a higher recrystallization temperature, and the recrystallized rhenium is not a brittle material, but its strength is reduced. As a non-stressed heating device, it still has good working ability and has the best high temperature stability. High creep strength. Therefore, rhenium is used to manufacture MOCVD heating devices. It is the most appropriate choice in consideration of performance and cost. No other material can replace it.
See more information
Tungsten heating devices will become brittle after being recrystallized after being used at high temperature, and will easily break under impact or vibration. Compared with tungsten, rhenium has a higher recrystallization temperature, and the recrystallized rhenium is not a brittle material, but its strength is reduced. As a non-stressed heating device, it still has good working ability and has the best high temperature stability. High creep strength. Therefore, rhenium is used to manufacture MOCVD heating devices. It is the most appropriate choice in consideration of performance and cost. No other material can replace it.
UMM

Scan the QR code and follow the official account