UMM
language
中国
韩国
韩国
韩国
韩国
韩国
imgboxbg

Application Technology

Understand cutting-edge application technology

搜索
Search

Application Technology

Your location:
Homepage
/
/
MOCVD irreplaceable "rhenium" heater member

MOCVD irreplaceable "rhenium" heater member

(Summary description)Tungsten heating devices will become brittle after being recrystallized after being used at high temperature, and will easily break under impact or vibration. Compared with tungsten, rhenium has a higher recrystallization temperature, and the recrystallized rhenium is not a brittle material, but its strength is reduced. As a non-stressed heating device, it still has good working ability and has the best high temperature stability. High creep strength. Therefore, rhenium is used to manufacture MOCVD heating devices. It is the most appropriate choice in consideration of performance and cost. No other material can replace it.

MOCVD irreplaceable "rhenium" heater member

(Summary description)Tungsten heating devices will become brittle after being recrystallized after being used at high temperature, and will easily break under impact or vibration. Compared with tungsten, rhenium has a higher recrystallization temperature, and the recrystallized rhenium is not a brittle material, but its strength is reduced. As a non-stressed heating device, it still has good working ability and has the best high temperature stability. High creep strength. Therefore, rhenium is used to manufacture MOCVD heating devices. It is the most appropriate choice in consideration of performance and cost. No other material can replace it.

Information

Metal Organic Chemical Vapor Deposition (MOCVD) is a chip epitaxial technology for preparing mixed semiconductor devices, metal and metal oxide and metal nitride film materials. In the MOCVD system, crystal growth is mostly under normal pressure or low pressure (10-100 Torr), and the substrate temperature is 500 to 1200 ℃. In order to grow pure, steep interface, and good uniform film materials, MOCVD equipment needs to be chemical The reaction provides a suitable environment. The heating system is an important part of the MOCVD equipment. Whether it can heat the substrate quickly and uniformly directly affects the quality of film deposition, thickness consistency, and chip performance.

 

 

The working conditions of the MOCVD heater are very harsh: long continuous working time, high temperature, high heat flux and repeated temperature rise and fall. The resistor piece is the core part of the heater. After a certain current is passed, the resistor piece generates heat and becomes the heat source of the entire device. When the surface temperature of the graphite plate used to place the substrate is 1350K, the temperature of the resistance piece is as high as 2000K, and the temperature of the resistance heater can reach 2500℃ or more during the heating process, so the selected material must have high melting point, good high temperature strength, and chemical High stability characteristics. Take the MOCVD equipment for growing GaN as an example, the optimal growth temperature is about 1000~1200℃. The temperature of the heating element of the heater is about 1500~2000℃. In the process of growing GaN, the epitaxial substrate is required to rapidly rise in temperature (the heating rate reaches 3-10°C/s) and drop in temperature.

 

According to the process requirements of the MOCVD equipment, the performance of the heating ring must meet: 1. Realize uniform heating of the large-size graphite tray, and the effective area ratio should cover the entire surface as much as possible; 2. The temperature rise and fall rate is fast and the stability time is short; 3. The temperature rise and fall dynamics Keep the temperature uniform during the process; 4. For different gas flow environments, uniform heating can be achieved; 5. In the process of repeated heating and cooling, the structure is stable and reliable, and the service life is long.

 

According to the working characteristics of MOCVD, the selection of metal resistance heating elements is the most reasonable. According to the actual temperature conditions that need to be met, only a few refractory metals such as tungsten and rhenium can meet the requirements of use.

 

Performance name Pure tungsten Pure rhenium

Melting point/℃

3410

3170

Density/(g/cm3)

19.3

21.02

 

Resistivity μΩ·cm

20℃

5.5

19.8

1000℃

36.2

62

1500℃

52

82

2000℃

66

150

Microhardness/MPa

Processing state

3423-3923

4903-7845

1000℃ annealing

834

2256-2452

 

Tensile strength/MPa

Processing state

1950

1600

1400℃ annealing

1650

1400

1600℃ annealing

1200

1400

1800℃ annealing

850

1400

 

Elongation/%

Processing state

1-2

1-2

1400℃ annealing

1-2

20-25

1600℃ annealing

1-2

18-20

1800℃ annealing

1-2

10-15

Recrystallization temperature

1100℃

1500℃

 

Tungsten heating devices will become brittle after being recrystallized after being used at high temperature, and will easily break under impact or vibration. Compared with tungsten, rhenium has a higher recrystallization temperature, and the recrystallized rhenium is not a brittle material, but its strength is reduced. As a non-stressed heating device, it still has good working ability and has the best high temperature stability. High creep strength. Therefore, rhenium is used to manufacture MOCVD heating devices. It is the most appropriate choice in consideration of performance and cost. No other material can replace it.

Scan the QR code to read on your phone

Hot Technology Ranking

Advantages and disadvantages of friction stir welding
 Advantages and disadvantages of friction stir welding
The main advantages of friction stir welding are as follows:
See more information
The main advantages of friction stir welding are as follows:
What fields are friction stir welding generally used in
What fields are friction stir welding generally used in
Everyone may have heard of Friction Stir Welding (FSW), which was officially launched in 1991. As soon as it appeared, it attracted the attention of the world.
See more information
Everyone may have heard of Friction Stir Welding (FSW), which was officially launched in 1991. As soon as it appeared, it attracted the attention of the world.
Specialized solutions for milling, cutting and drilling tool base materials for high temperature alloys, refractory metals and other parts
Specialized solutions for milling, cutting and drilling tool base materials for high temperature alloys, refractory metals and other parts
Ultra Minor Metals Ltd(UMM) has more than ten years of experience in the application and development of alloy trace addition, and provides rare, scattered and rare precious metal element addition solutions for various alloy manufacturing enterprises. According to the difficulties encountered in milling, cutting and drilling of high-temperature alloys, refractory metals and other parts and components reported by many users in recent years, UMM has finally successfully developed after five years of joint research and development tests with leading domestic enterprises. In order to add ruthenium, rhenium, osmium and other elemental high-purity ultrafine powders specially used to add to the base material of such special cemented carbide tools, or Co-Ru, Re, Os binary and ternary pre-alloyed mixed powders, we also warmly welcome all major High-performance alloy tool manufacturing enterprises and our company jointly develop various special customized tool material grades.
See more information
Ultra Minor Metals Ltd(UMM) has more than ten years of experience in the application and development of alloy trace addition, and provides rare, scattered and rare precious metal element addition solutions for various alloy manufacturing enterprises. According to the difficulties encountered in milling, cutting and drilling of high-temperature alloys, refractory metals and other parts and components reported by many users in recent years, UMM has finally successfully developed after five years of joint research and development tests with leading domestic enterprises. In order to add ruthenium, rhenium, osmium and other elemental high-purity ultrafine powders specially used to add to the base material of such special cemented carbide tools, or Co-Ru, Re, Os binary and ternary pre-alloyed mixed powders, we also warmly welcome all major High-performance alloy tool manufacturing enterprises and our company jointly develop various special customized tool material grades.
The principle of friction stir welding
The principle of friction stir welding
Friction stir welding refers to the use of the heat generated by the friction between the high-speed rotating welding tool and the workpiece to partially melt the material to be welded.
See more information
Friction stir welding refers to the use of the heat generated by the friction between the high-speed rotating welding tool and the workpiece to partially melt the material to be welded.
Application of friction stir welding
Application of friction stir welding
Friction stir welding is a solid-state connection method. In terms of connection principle, for the metal materials to be connected, as long as the material has a stirring head material that can work effectively in the forging state, the friction stir welding method can be used. to connect.
See more information
Friction stir welding is a solid-state connection method. In terms of connection principle, for the metal materials to be connected, as long as the material has a stirring head material that can work effectively in the forging state, the friction stir welding method can be used. to connect.
CT machine X-ray tube anode rotating target
CT machine X-ray tube anode rotating target
When the CT tube is working, the anode target produces X-rays under the bombardment of high-energy electron beams, but the energy conversion efficiency is very low. Only about 1% of the energy is converted into X-ray energy, and the remaining 99% of the energy is converted into heat energy. The local temperature can be as high as 2600°C. Therefore, the rotating anode target needs to have the characteristics of high high temperature strength, good thermal shock resistance, and fast heat dissipation. Therefore, the density of the target material, the content of alloy impurity elements, and the brazing bonding strength of graphite and molybdenum alloys affect the service life of the target. Key factor.
See more information
When the CT tube is working, the anode target produces X-rays under the bombardment of high-energy electron beams, but the energy conversion efficiency is very low. Only about 1% of the energy is converted into X-ray energy, and the remaining 99% of the energy is converted into heat energy. The local temperature can be as high as 2600°C. Therefore, the rotating anode target needs to have the characteristics of high high temperature strength, good thermal shock resistance, and fast heat dissipation. Therefore, the density of the target material, the content of alloy impurity elements, and the brazing bonding strength of graphite and molybdenum alloys affect the service life of the target. Key factor.
MOCVD irreplaceable "rhenium" heater member
MOCVD irreplaceable "rhenium" heater member
Tungsten heating devices will become brittle after being recrystallized after being used at high temperature, and will easily break under impact or vibration. Compared with tungsten, rhenium has a higher recrystallization temperature, and the recrystallized rhenium is not a brittle material, but its strength is reduced. As a non-stressed heating device, it still has good working ability and has the best high temperature stability. High creep strength. Therefore, rhenium is used to manufacture MOCVD heating devices. It is the most appropriate choice in consideration of performance and cost. No other material can replace it.
See more information
Tungsten heating devices will become brittle after being recrystallized after being used at high temperature, and will easily break under impact or vibration. Compared with tungsten, rhenium has a higher recrystallization temperature, and the recrystallized rhenium is not a brittle material, but its strength is reduced. As a non-stressed heating device, it still has good working ability and has the best high temperature stability. High creep strength. Therefore, rhenium is used to manufacture MOCVD heating devices. It is the most appropriate choice in consideration of performance and cost. No other material can replace it.
About rhenium technology
About rhenium technology
Rhenium is a sparse, refractory metal. Scattered means that the content of rhenium in the earth's crust is scarce and dispersed, and refractory means that the melting point of rhenium metal is extremely high, with a melting point of 3180°C, second only to tungsten, ranking second among all metals. Because of its compound's excellent properties such as catalytic activity, high temperature resistance, and corrosion resistance, it is mainly used in petroleum smelting catalysts, thermoelectric superalloys, electronic tube structural materials, special aerospace alloys, and environmental protection.
See more information
Rhenium is a sparse, refractory metal. Scattered means that the content of rhenium in the earth's crust is scarce and dispersed, and refractory means that the melting point of rhenium metal is extremely high, with a melting point of 3180°C, second only to tungsten, ranking second among all metals. Because of its compound's excellent properties such as catalytic activity, high temperature resistance, and corrosion resistance, it is mainly used in petroleum smelting catalysts, thermoelectric superalloys, electronic tube structural materials, special aerospace alloys, and environmental protection.
About MOCVD
About MOCVD
2020-12-01
MOCVD (Metal Organic Chemical Vapor Deposition, metal organic chemical vapor deposition) technology, also known as OMVPE, MOVPE, etc., is a new technology for preparing compound semiconductor single film proposed by Rockwell in 1968. The MOCVD method is to decompose and react the metal organic compound diluted in the carrier gas and the hydride of the V or VI element on the heated epitaxial substrate, and the reaction product is deposited on the epitaxial substrate to form A kind of epitaxial film technology, the use of this technology can grow nano-level high-quality film, it is precisely because of this feature that MOCVD technology is widely used in the production and manufacturing of semiconductor devices. T
See more information
MOCVD (Metal Organic Chemical Vapor Deposition, metal organic chemical vapor deposition) technology, also known as OMVPE, MOVPE, etc., is a new technology for preparing compound semiconductor single film proposed by Rockwell in 1968. The MOCVD method is to decompose and react the metal organic compound diluted in the carrier gas and the hydride of the V or VI element on the heated epitaxial substrate, and the reaction product is deposited on the epitaxial substrate to form A kind of epitaxial film technology, the use of this technology can grow nano-level high-quality film, it is precisely because of this feature that MOCVD technology is widely used in the production and manufacturing of semiconductor devices. T
UMM

Scan the QR code and follow the official account

EN

CN

Ultra Minor Metals Ltd (UMM) all rights reserved       湘ICP备17001881号       by:www.300.cnchangsha